モンテカルロ法による円周率の計算

Canvas not supported

モンテカルロ法とは、乱数を用いたシミュレーションを何度も行うことにより近似解を求める計算手法である。

一辺の長さが2の正方形の中に、半径1の円が内接している。 この正方形の中にランダムに点を打つ。そのとき、打った点の数aに対する円の内部にある点bの割合は、 点の数を多くしていくと、正方形の面積に対する円の面積の割合に近づく。 すなわち、bを大きくしたとき、\[ \frac{a}{b} = \frac{\pi}{4} \] が言える。したがって\[ \pi= \frac{4a}{b} \]と近似できる。